PBN (RNAV & RNP)

What is the "Perfect Flight?"

Conventional Navigation [1920s]

Ground-based navigation aids (NAVAIDs) ⇒ Aircraft Overfly NAVAID or Intersection

Display Accuracy is a Function of Distance

Protected Area Grows ("Splayed")

= Limited Design Flexibility

NEXT GEN Components: RNAV/RNP

Moving to Performance-Based Navigation

Conventional Routes

Today's airways connect ground-based navigation aids

RNAV

Area Navigation (RNAV) routes follow defined "waypoints"

RNP

Required Navigation Performance (RNP) routes within specified "containment area"

Source: Federal Aviation Administration

Access - Improve airport and airspace access in all weather conditions and <u>the ability to meet limiting obstacle constraints</u> caused by challenging terrains or restricted area

Increase runway access, Increase safety, Reduce noise

What is the "Perfect Flight?"

Phases of Flight

Phases of Flight

- **C** = **Performance-Based** Communication (**PBC**)
- **N** = **Performance-Based Navigation** (**PBN**)
- **S** = **Performance-Based Surveillance (PBS)**
- **ATM = Air Traffic Management**

Performance Based Navigation (PBN) Implementation

Area Navigation based on performance requirements for aircraft operating along an ATS route, on an instrument approach procedure or in a designated airspace.

Introduction to PBN

Note: Performance requirements are expressed in navigation specifications in terms of accuracy, integrity, continuity and functionality needed for the proposed operation in the context of particular airspace concept. Availability of GNSS SIS or some other NAVAID infrastructure in considered within the airspace concept in order to enable the navigation application.

ICAO PBN Strategies

20

ICAO Assembly Resolution

- State Letter on Issuance of ICAO PBN Manual (Doc 9613)
- States and planning and implementation regional groups (PIRGs) to complete a PBN implementation plan by 2009 to achieve
 - Implementation of RNAV and RNP operations (where required) for en route and terminal areas according to established timelines and intermediate milestones; and
 - Implementation of approach procedures with vertical guidance (APV) (Baro-VNAV and/or augmented GNSS) for all instrument runway ends, either as the primary approach or as a back-up for precision approaches.
 - 30% by 2010; 70% by 2014, and 100% by 2016

Progress on Thailand Implementation

22

Thailand WG on PBN&GNSS

Since May 2007, Thailand National Working Group on PBN & GNSS Implementation consists of representatives from:

- DCA Thailand
- Airlines
- Thai Pilots' Association
- Airports of Thailand
- Aeronautical Radio of Thailand

Area 1: Policy & Implementation Planning

- **Conduct feasibility,** e.g. why should we implement PBN and GNSS? How much would it cost?
- **Define roadmap,** e.g. where and when should we implement?
- Address regulatory issues, e.g. what regulations/legislations are needed?

- **Identify/Establish standards,** e.g. how should we implement? What actions are needed to be done? Who are responsible for doing what?

Area 3: Communication with Stakeholders

- **Notify stakeholders,** e.g. let other people know what we have planned and accomplished.
- **Gather feedback,** e.g. what do other stakeholders think? How can we improve what we have done?

PBN TMA Implementation

26

Progress on PBN Approach Implementation for Phuket International Airport

28

Phuket International Airport

Navigation Infrastructure at Phuket

Existing Conventional Navigation Aids

- 1 Doppler VHF Omni-directional radio Range (DVOR) for RWY 27 & RWY 09
- 1 Instrument Landing System (ILS) for RWY 27

Not advisable due to environment impacts and lack of construction site

Summary: Limitations of Conventional Navigation

	Conventional
Runway 27	1.4-degree ILS offset
Runway 09	10-degree VOR offset
	No vertical guidance
	High OCA at 850 feet

Procedures for Phuket 09

Procedures for Phuket RWY 27

(LAF) ANFIL (LAF) ANFIL

Yellow – ILS Track Green - PBN Track

• Ban Tha Chat Chai

(IF) ... (IF) Start Desent Point ... Start Desent Point (FAF)

HR RWV27 - DA/H(LNAV/VNAV)

Ban Muang Mai 👝

Thalang

(LAF) MANYU 5

Flight Validation – On Flight

Summary: Safety Improvements with PBN

	Conventional	PBN	
Runway 27	1.4-degree ILS offset	Straight-in approach	
Runway 09	10-degree VOR offset	Straight-in approach	
	No vertical guidance	Vertical guidance	
	OCA at 850 feet	OCA at 750 feet	

Current Progress

Phone: 66 02 286 0922 Fax: 66 02 287 4060 AFTN: VTBAYOYX E-mail: aisthai@aviation.go.th DEPARTMENT OF CIVIL AVIATION Aeronautical Information Service Tung Mahamek, Bangkok 10120 Thailand AIRAC AIP SUPPLEMENT A 11/08

22 May 2008

Establishment of Operational Evaluation for RNAV(GNSS) Approach Charts

at Phuket International Airport

Effecting on 3 July 2008 – 3 October 2008, an operational evaluation for RNAV(GNSS) Approach Charts at Phuket International Airport, namely RNAV(GNSS) Approach RWY27 and RNAV(GNSS) Approach RWY09. The charts for the operational evaluation are attached herewith. During this operational evaluation, the RNAV(GNSS) Approach Charts shall be used only under VMC.

Current Progress

Safety and Efficiency Improvements with PBN

Phuket (VTSP)	Conventional	PBN	
Runway 27	1.4-degree ILS offset	Straight-in approach	
Runway 09	6-degree VOR offset	Straight-in approach	
	OCA at 850 feet	OCA at 750 feet	

Samui (VTSM)	Conventional	PBN
Runway 17	Straight-in yet through unstable weather area	Straight-in approach, yet able to side-step to avoid the unstable weather area

Hat Yai (VTSS)	Conventional	PBN
Runway 08	Unavailable due to mountainous terrain	Straight-in approach

Chiang Mai (VTCC)	Conventional	PBN
Runway 18	VOR circling approach with high circling OCA/H	Runway aligned approach

Thailand PBN Implementation (2)

2011	VTSF (Nakhon si Thammarat)	Approach	RNP APCH (w/ Baro-VNAV)	2012	✓
2011	VTSB (Surat thani)	Approach	RNP APCH (w/ Baro-VNAV)	2012	✓ w/o Baro-VNAV
2011	VTBO (Trat)	Approach	RNP APCH (w/ Baro-VNAV)	2012	w/o Baro-VNAV
2011	VTSC (Narathiwat)	Approach	RNP APCH (w/ Baro-VNAV)	2012	w/o Baro-VNAV
2012	VTPO (Sukhothai)	Approach	RNP APCH (w/ Baro-VNAV)	2013.	2015
		SID	RNAV 1 (D/D/I or GNSS)	2013	2010
2012	VTPP (Phitsanulok)	Approach	RNP APCH (w/ Baro-VNAV)	2013	2016
2012	VTSR (Ranong)	Approach	RNP APCH (w/ Baro-VNAV)	2013	2015
2013	VTUU (Ubon Ratchathani)	Approach	RNP APCH (w/ Baro-VNAV)	2013	✓
2013	VTCH (Mae Hong Som)	Approach	RNP APCH (w/ Baro-VNAV)	2014	2016

50% (18 Airports) by the end of 2014

20	013	VTCP (Phrae)	Approach	RNAV (GNSS) RWY01 (w/ BARO-VNAV)	2014	✓ w/o Baro-VNAV
20	013	VTUW (Nakhon Panom)	Approach	RNAV (GNSS) RWY15 RNAV (GNSS) RWY33 (w/ BARO-VNAV)	2014	✓ w/o Baro-VNAV
20	013	VTUI (Sakon Nakhon)	Approach	RNAV (GNSS) RWY05 RNAV (GNSS) RWY23 (w/ BARO-VNAV)	2014	✔ w/o Baro-VNAV
20	013	VTPH (Huahin)	Approach	RNAV (GNSS) RWY16 (LNAV)	2014	✓ w/o Baro-VNAV

Th

Chailand PBN Implementation (3)

PBN En-route Implementation

47

M752 connecting Suvarnabhumi with Australia Expect RNAV-5 Navigation Specification

RB

Kin

-1

M502 connecting Suvarnabhumi with South Asia Expect RNAV-5 Navigation Specification

Route	Number of Flight	Reduce Fuel Burn	Reduce Carbon Emission
	(Month)	(Month)	(Month)
Suvarnabhumi – Male	24 Flights	~1,488 Kg	~5,208 Kg

Fuel Saving from M502: Data from Bangkok Airways

PBN En-route

- On-Going Initiatives : PBN Domestic En-route
 - Domestic Enroute : 2.2 mil kg of fuel save / year estimated
 - Bangkok Phuket
 - Bangkok Samui Hat Yai
 - Bangkok Chiang Mai
 - Bangkok Udon Thani
 - Bangkok Ubon Ratchathani
 - Implementation On-going

BRIGHTY = 496 NV

BROCKLONE 264 188

• On-going Initiatives : **PBN International Routes via ICAO**

- Bay of Bengal ICAO BOB Reduced Separation Minima
- South China Sea ICAO South China Sea Route Review Task Force

PBN En-route: Internati