# ร่างของเขตงานจัดซื้อระบบอากาศยานไร้คนขับ พร<sup>้</sup>อมอุปกรณ์ทดสอบสัญญาณระบบช่วยการเดินอากาศ ILS, VOR

#### ๑. ความเป็นมา

โครงการศึกษาทดลองการใช้อากาศยานไร้คนขับ (DRONE-BASED NAVAIDS SIGNAL-IN-SPACE MEASUREMENT AND EVALUATION SERVICES) คือการจัดหาระบบอากาศยานไร้คนขับพร้อมอุปกรณ์ ทดสอบสัญญาณระบบช่วยการเดินอากาศ ILS, VOR จำนวน ๑ ระบบ มุ่งเน้นการตรวจสอบประสิทธิภาพ ระบบช่วยการเดินอากาศ (NAVAIDS) เพื่อประเมินและปรับปรุงการบริการ ณ สนามบินภูมิภาคทั่วประเทศ ตามมาตรฐานของ ICAO โดยการใช้โดรนช่วยลดค่าใช้จ่ายและขั้นตอนในการทดสอบที่ต้องใช้ชั่วโมงบินมาก นอกจากนี้ยังช่วยเพิ่มประสิทธิภาพในการซ่อมบำรุง โครงการนี้จะเปรียบเทียบผลการทดสอบด้วยโดรนกับ การทดสอบด้วยเครื่องบิน และข้อมูลดังกล่าวจะถูกส่งให้สำนักงานการบินพลเรือนแห่งประเทศไทย (กพท.) เพื่อพิจารณาอนุมัติการใช้งานโดรนเพื่อบินทดสอบต่อไป

### ๒. วัตถุประสงค์

จัดซื้อระบบอากาศยานไร้คนขับพร้อมอุปกรณ์ทดสอบสัญญาณระบบช่วยการเดินอากาศ ILS และ VOR เพื่อประเมินผลการเปรียบเทียบระหว่างการทดสอบด้วยโดรนและการทดสอบด้วยเครื่องบินทดสอบของ บวท. และจัดส่งผลการทดสอบให้ กพท. เพื่อพิจารณาอนุมัติการใช้งานโดรนในการบินทดสอบ ซึ่งจะนำไปใช้ ในการปรับปรุงประสิทธิภาพของระบบช่วยการเดินอากาศ ณ สนามบินภูมิภาคทั่วประเทศ

### ๓. คุณสมบัติของผู้ยื่นข้อเสนอ

- ๓.๑. ผู้ยื่นข้อเสนอจะต้องมีคุณสมบัติตามที่ระบุในเอกสารเชิญชวนของคณะกรรมการนโยบายการ จัดซื้อจัดจ้างและการบริหารพัสดุภาครัฐ หรือคณะกรรมการวินิจฉัยปัญหาการจัดซื้อจัดจ้าง และการบริหารพัสดุภาครัฐกำหนด
- ๓.๒. ผู้ยื่นข้อเสนอจะต้องเป็นนิติบุคคลผู้มีอาชีพรับจ้างงานโดยวิธีคัดเลือกดังกล่าว
- ๓.๓. ผู้ยื่นข้อเสนอต้องไม่มีกรรมการหรือพนักงาน บวท. เป็นผู้จัดการ หุ้นส่วนผู้จัดการ กรรมการ ผู้จัดการ ผู้บริหาร ผู้มีอำนาจในการดำเนินงานในกิจการของบุคคลธรรมดาหรือของนิติบุคคล เป็นหุ้นส่วนในห้างหุ้นส่วนสามัญหรือห้างหุ้นส่วนจำกัด เป็นผู้ถือหุ้นรายใหญ่ในบริษัทจำกัด หรือบริษัทจำกัดมหาชน หรือเป็นที่ปรึกษาของกิจการนั้น
- ๓.๔. ผู้ยื่นข้อเสนอต้องได้รับการแต่งตั้งเป็นตัวแทนจำหน่ายจากผู้ผลิต หรือตัวแทนจำหน่าย ในประเทศไทย โดยแนบหนังสือรับรองดังกล่าวในวันยื่นข้อเสนอ

### ๔. กำหนดเวลาส่งมอบพัสดุ

ภายใน ๒๔๐ วัน นับถัดจากวันลงนามในสัญญา



### ๕. หลักเกณฑ์ในการพิจารณาคัดเลือกข้อเสนอ

พิจารณาจากเกณฑ์ราคา

### ๖. วงเงินงบประมาณ/วงเงินที่ได้รับจัดสรร

เป็นเงิน ๒๓,๑๐๐,๐๐๐ บาท

#### ๗. สถานที่ส่งมอบ

สำนักงานใหญ่ บวท. (ทุ่งมหาเมฆ)

#### ๘. การส่งมอบ

- งวดที่ ๑: ผู้ขายต้องส่งมอบงานงวดที่ ๑ ได้ครบถ้วนถูกต้อง ตามรายละเอียดที่กำหนดในสัญญาซื้อ ขาย และคณะกรรมการตรวจรับฯ ได้ตรวจรับสิ่งของไว้เรียบร้อยแล้ว ดังนี้
  - (๑) จัดส่งเอกสารที่เกี่ยวข้องกับกระบวนการตรวจรับฯ ดังนี้
- (ก) เอกสาร Factory Acceptance Test (FAT) Procedure สำหรับกระบวนการ ตรวจรับระบบอากาศยานไร้คนขับพร้อมอุปกรณ์ทดสอบสัญญาณระบบช่วยการเดินอากาศ ILS, VOR ณ โรงงานผู้ผลิต
- (ฃ) เอกสาร Site Acceptance Test (SAT) Procedure Part 1 สำหรับ กระบวนการตรวจรับระบบอากาศยานไร้คนขับพร้อมอุปกรณ์ทดสอบสัญญาณระบบช่วยการ เดินอากาศ ILS, VOR ณ ท่าอากาศยานนครราชสีมา
- (ค) เอกสาร Site Acceptance Test (SAT) Procedure Part 2 สำหรับ กระบวนการตรวจรับอุปกรณ์ทดสอบสัญญาณระบบช่วยการเดินอากาศ ILS, VOR ณ กองมาตรฐาน เครื่องวัด ของ บวท.

โดยนำส่งเอกสารให้ บวท. อย่างน้อย ๖๐ วัน ก่อนเริ่มตรวจรับระบบอากาศ ยานไร้คนขับพร้อมอุปกรณ์ทดสอบสัญญาณระบบช่วยการเดินอากาศ ILS, VOR ณ โรงงานผู้ผลิต เพื่อคณะกรรมการตรวจรับฯ ให้ความเห็นชอบ

- (๒) จัดให้มีการฝึกอบรมให้แก่เจ้าหน้าที่ของ บวท. หลักสูตรการติดตั้ง ใช้งาน และซ่อม บำรุงรักษาระบบอากาศยานไร้คนขับพร้อมอุปกรณ์ทดสอบสัญญาณระบบช่วยการเดินอากาศ ILS, VOR สำหรับเจ้าหน้าที่ บวท. จำนวน ๑ รุ่น รุ่นละ ๕ คน ระยะเวลาการฝึกอบรม ๕ วันทำการ ณ สถานที่ฝึกอบรมที่ผู้ขายกำหนดในต่างประเทศ โดยมีเนื้อหาการฝึกอบรมครอบคลุมอย่างน้อย ดังนี้
  - (ก) Installation การติดตั้งระบบ/อุปกรณ์ (ทฤษฎีและปฏิบัติ)
  - (ข) Operation การใช้งานระบบ/อุปกรณ์ (ทฤษฎีและปฏิบัติ)

(ค) Maintenance การซ่อมบำรุงรักษาระบบ/อุปกรณ์ (ทฤษฎีและปฏิบัติ)
โดยผู้ขายต้องจัดการฝึกอบรมให้แก่เจ้าหน้าที่ของ บวท. ณ สถานที่ผู้ผลิต
จัดเตรียม นับจากวันที่ลงนามในสัญญา ทั้งนี้ ผู้ขายจะต้องเป็นผู้รับผิดชอบค่าใช้จ่ายทั้งปวงสำหรับ
การฝึกอบรม (รวมถึงสื่อ/อุปกรณ์การฝึกอบรมทั้งหมด เช่น เอกสารการฝึกอบรม เครื่องเขียน
อุปกรณ์อิเล็กทรอนิกส์สำหรับบันทึก/จัดเก็บข้อมูล และค่าใช้จ่ายในการจัดส่งเอกสารการฝึกอบรม
กลับมายังราชอาณาจักรไทย) ดังกล่าว ยกเว้น ค่าบัตรโดยสารเครื่องบิน ค่าเบี้ยเลี้ยง และค่าที่พัก
ถือเป็นความรับผิดชอบของ บวท

(๓) จัดให้มีการทดสอบ (ทดสอบภาคพื้น) ระบบอากาศยานไร้คนขับพร้อมอุปกรณ์ ทดสอบสัญญาณระบบช่วยการเดินอากาศ ILS, VOR (ตราอักษรและรุ่นเดียวกับที่ได้ยื่นข้อเสนอ) ณ โรงงานผู้ผลิต ตาม FAT Procedure ที่ผ่านการเห็นชอบจาก บวท. แล้ว โดยอุปกรณ์ที่เสนอจะต้อง สามารถผ่านการทดสอบการสอบเทียบ ณ โรงงานผู้ผลิต ตาม Scope of Technical Specifications /Item 2.3 ถึง Item 2.5 และจัดส่งรายงานผลการทดสอบ (FAT Report) ตาม Scope of Technical Specifications /Item 5.4 ซึ่งได้รับรองผลการตรวจรับฯ จากโรงงานผู้ผลิตให้แก่คณะกรรมการ ตรวจรับฯ ก่อนนำระบบ/อุปกรณ์ฯ เข้ามาในราชอาณาจักรไทย โดยผู้ขายจะต้องเป็นผู้รับผิดชอบ ค่าใช้จ่ายสำหรับการดำเนินการทั้งหมดดังกล่าว <u>ยกเว้น</u> ค่าบัตรโดยสารเครื่องบิน ค่าเบี้ยเลี้ยง และค่าที่พัก ถือเป็นความรับผิดชอบของ บวท.

ทั้งนี้ กรณีที่การตรวจรับระบบอากาศยานไร้คนขับพร้อมอุปกรณ์ทดสอบ สัญญาณระบบช่วยการเดินอากาศ ILS, VOR (ตราอักษรและรุ่นเดียวกับที่ได้ยื่นข้อเสนอ) ณ โรงงาน ผู้ผลิต ไม่ผ่านตามข้อกำหนดทางเทคนิค และจำเป็นต้องเริ่มดำเนินการครั้งใหม่ ผู้ขายจะต้องเป็น ผู้รับผิดชอบค่าใช้จ่ายทั้งหมด รวมถึงค่าใช้จ่ายของคณะกรรมการตรวจรับฯ เช่น ค่าบัตรโดยสาร เครื่องบิน ค่าเบี้ยเลี้ยง ค่าที่พัก และอื่น ๆ ที่เกี่ยวข้องกับการตรวจรับทั้งหมด

(๔) จัดส่งเอกสาร/คู่มือสำหรับระบบอากาศยานไร้คนขับพร้อมอุปกรณ์ทดสอบสัญญาณ ระบบช่วยการเดินอากาศ ILS, VOR (ตราอักษร และรุ่นเดียวกับที่ได้ยื่นข้อเสนอ) ตาม Scope of Technical Specifications /Item 5.6 โดย บวท. ขอให้ผู้ขายนำส่ง ณ สถานที่ตั้งของสำนักงานใหญ่ บวท. (ทุ่งมหาเมฆ) ให้เสร็จสิ้นเรียบร้อยก่อนเริ่มการกระบวนการตรวจรับระบบอากาศยานไร้คนขับ พร้อมอุปกรณ์ทดสอบสัญญาณระบบช่วยการเดินอากาศ ILS, VOR ณ ท่าอากาศยานนครราชสีมา

งวดที่ ๒: ผู้ขายต้องส่งมอบงานงวดที่ ๒ ณ สำนักงานใหญ่ บวท. (ทุ่งมหาเมฆ) ได้ครบถ้วนถูกต้อง ตามรายละเอียดที่กำหนด ในสัญญาซื้อขาย และคณะกรรมการตรวจรับฯ ได้ตรวจรับ สิ่งของไว้เรียบร้อยแล้ว ดังนี้

(๑) จัดให้มีการทดสอบ (ทดสอบภาคอากาศ) ระบบอากาศยานไร้คนขับพร้อมอุปกรณ์ ทดสอบสัญญาณระบบช่วยการเดินอากาศ ILS, VOR (ตราอักษรและรุ่นเดียวกับที่ได้ยื่นข้อเสนอ) ณ ท่าอากาศยานนครราชสีมา ตาม SAT Procedure – Part 1 ที่ผ่านการเห็นชอบจาก บวท. แล้ว โดย ระบบ/อุปกรณ์ที่เสนอจะต้องให้ผลการวัดสัญญาณจากสถานี ILS-LOC, ILS-GP และ DVOR ที่แสดง ถึงความสอดคล้องกับรายงานผลการบินทดสอบ Periodic ของ บวท. ตาม Scope of Technical Specifications /Item 1.17 และจัดส่งรายงานผลการทดสอบ (SAT Report – Part1) ตาม Scope of Technical Specifications /Item 5.5 (a) ให้แก่ บวท. โดยผู้ขายจะต้องเป็นผู้รับผิดชอบค่าใช้จ่ายสำหรับ การดำเนินการทั้งหมดดังกล่าว <u>ยกเว้น</u> ค่าเดินทาง ค่าเบี้ยเลี้ยง และค่าที่พัก ถือเป็นความรับผิดชอบ ของ บวท.

- (๒) จัดให้มีการทดสอบอุปกรณ์ทดสอบสัญญาณระบบช่วยการเดินอากาศ ILS, VOR (ตราอักษรและรุ่นเดียวกับที่ได้ยื่นข้อเสนอ) ณ กองมาตรฐานเครื่องวัด ของ บวท. ตาม SAT Procedure Part 2 ที่ผ่านการเห็นชอบจาก บวท. แล้ว โดยอุปกรณ์ที่เสนอจะต้องสามารถผ่านการ ทดสอบการสอบเทียบที่ดำเนินการในห้องปฏิบัติการสอบเทียบอุปกรณ์ทดสอบของ บวท. ตาม Scope of Technical Specifications /Item 2.3 ถึง Item 2.5 และจัดส่งรายงานผลการทดสอบ (SAT Report Part 2) ตาม Scope of Technical Specifications /Item 5.5 (b) ให้แก่ บวท.
- (๓) จัดส่งระบบอากาศยานไร้คนขับพร้อมอุปกรณ์ทดสอบสัญญาณระบบช่วยการ เดินอากาศ ILS, VOR (ตราอักษรและรุ่นเดียวกับที่ได้ยื่นข้อเสนอ) พร้อมซอฟต์แวร์ของระบบ ตรวจสอบการบิน (FIS) ซึ่งได้รับรองผลจากคณะกรรมการตรวจรับฯ เรียบร้อยแล้วตาม Scope of Technical Specifications /Item 5.1, 5.2, 5.3 และ 5.7 ให้แก่ บวท. ณ สำนักงานใหญ่ บวท. (ทุ่งมหาเมฆ) ทั้งนี้ ซอฟต์แวร์ของระบบตรวจสอบการบิน (FIS) จะต้องมีใบอนุญาตใช้งานแบบถาวร และสามารถนำไปใช้กับทุกสนามบินในประเทศไทยได้ โดยไม่จำเป็นต้องมีค่าใช้จ่ายอื่น ๆ เพิ่มเติม

ในการนำเข้าเครื่องวิทยุคมนาคมที่ได้รับอนุญาตแล้ว ผู้ขายจะต้องปฏิบัติตามเงื่อนไขแนบ ท้ายใบอนุญาตนำเข้าที่สำนักงานคณะกรรมการกิจการกระจายเสียง กิจการโทรทัศน์และกิจการ โทรคมนาคมแห่งชาติ (กสทช.) กำหนด โดยแสดงเอกสารการส่งบัญชีแสดงรายการคลื่นวิทยุคมนาคม และข้อมูลอิเล็กทรอนิกส์ตามแบบให้ กสทช. ตรวจสอบภายใน ๗ วันนับแต่วันที่ทำและนำเข้า เครื่องวิทยุคมนาคมแล้วเสร็จให้ผู้ซื้อรับทราบ

#### ๙. การจ่ายเงิน

บวท. จะจ่ายค่าสิ่งของซึ่งได้รวมภาษีมูลค่าเพิ่ม ตลอดจนภาษีอากรอื่น ๆ และค่าใช้จ่ายทั้งปวงแล้ว ให้แก่ผู้ยื่นขอเสนอที่ได้รับการคัดเลือกให้เป็นผู้ขาย เมื่อผู้ขายได้ส่งมอบพัสดุในแต่ละงวดงานได้ ครบถ้วน (ตามสัญญาซื้อขายหรือข้อตกลงเป็นหนังสือ) และ บวท. ได้ตรวจรับมอบพัสดุทั้งหมดในแต่ ละงวดงาน ไว้เรียบร้อยแล้วโดยจำแนกงวดการจ่ายเงิน ดังนี้ งวดที่ ๑: จ่ายร้อยละ ๒๐ ของมูลค่าสัญญาทั้งหมด เมื่อผู้ขายส่งมอบงานงวดที่ ๑ ได้ครบถ้วน ถูกต้อง ตามรายละเอียดในขอบเขตของงานข้อ ๘ การส่งมอบ งวดที่ ๑ และคณะกรรมการ ตรวจรับฯ ได้ตรวจรับสิ่งของไว้เรียบร้อยแล้ว

งวดที่ ๒: จ่ายร้อยละ ๘๐ ของมูลค่าสัญญาทั้งหมด เมื่อผู้ขายส่งมอบงานงวดที่ ๒ ได้ครบถ้วน ถูกต้อง ตามรายละเอียดในขอบเขตของงานข้อ ๘ การส่งมอบ งวดที่ ๒ และคณะกรรมการ ตรภจรับฯ ได้ตรวจรับสิ่งของไว้เรียบร้อยแล้ว

#### ๑๐. อัตราค่าปรับ

ร้อยละ ๐.๒ ต่อวันของราคารวมตามสัญญา

### ๑๑. การกำหนดระยะเวลารับประกันความชำรุดบกพร่อง

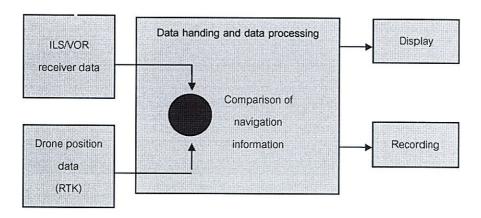
ไม่น้อยกว่า ๒ ปี รวมถึงการอัพเดทซอฟท์แวร์ นับจากวันที่ส่งมอบสิ่งของให้กับ บวท. เรียบร้อยแล้ว โดยภายในกำหนดเวลาดังกล่าวหากสิ่งของเกิดชำรุด หรือขัดของอันเนื่องมาจากการใช้งานปกติ ผู้ขายจะต้องรีบจัดการซ่อมแซมหรือแก้ไขให้ใช้การได้ดีดังเดิมภายใน ๓๐ วัน นับถัดจากวันที่ ได้รับแจ้งความชำรุดบกพร่อง

#### ๑๒. กำหนดยืนราคา

ไม่น้อยกว่า ๙๐ วัน นับตั้งแต่วันเสนอราคา

### ๑๓. รายละเอียดคุณลักษณะเฉพาะของพัสดุ

ตามเอกสารแนบ Technical Specification for Drone-based ILS and VOR measurements


## ๑๔. กำหนดหน้าที่ของคู่สัญญา

คู่สัญญาต้องจัดทำแผนการทำงานมาให้ภายใน ๑๕ วัน นับถัดจากวันลงนามในสัญญา ทั้งนี้แผนการ ทำงานดังกล่าวให้ถือเป็นเอกสารส่วนหนึ่งของสัญญา

#### Technical Specification for Drone-based ILS and VOR measurements

#### 1. General Requirements

- 1.1 The proposed solution shall include specialized field measurements required for the commissioning and regular maintenance of Instrument Landing Systems (ILS) at least categories I and II, as well as VHF Omnidirectional Radio Range (VOR) systems.
- 1.2 The proposed solution shall enhance operational efficiency, accuracy, and safety during the ground inspection of ILS and VOR systems, ensuring compliance with aviation regulations and standards.
- 1.3 The proposed solution shall consist of an integrated architecture with fully compatible components, including:
  - 1) Airborne segment
    - a. Drone platform with RTK position
    - b. ILS/VOR receiver with associated antennas
  - 2) Ground segment
    - a. Drone remote control
    - b. RTK base station
    - c. Flight Inspection System (FIS) operator computer
- 1.4 The operation of the FIS Software can be described according to the following block diagram.



- 1.5 The proposed solution shall provide high-precision performance, meeting or exceeding the specified requirements for signal measurement accuracy, positional reliability, and data processing as detailed in the relevant technical\*sections of this document.
- 1.6 The proposed solution shall meet the requirements for the ground inspection of navigation aids as specified in ICAO Annex 10, Aeronautical Telecommunications Volume I Radio Navigation Aids, and ICAO Doc 8071, Volume I Manual on Testing of Radio Navigation Aids.



- 1.7 The ILS/VOR receiver data and Drone positioning data (RTK) shall have the same timestamp simultaneously, referenced from the GNSS receiver. The tenderer is required to detail the methodology used to qualify the system.
- 1.8 The proposed solution shall support the following flight procedures as applicable, unless an alternative proposed procedures are shown to be more efficient and be compliant with related standards:
  - a. LOC: Approach, Partial Orbit
  - b. GP: Approach, Level Run (or Vertical),
  - c. VOR: Orbit (CW, CCW), Radial-In, Radial-Out
- 1.9 During a flight, a live view of the important measurement parameters, such as Course Deviation, Modulation Depth, Signal Power, shall be available to the operator, using a continuous data link between the airborne system and the ground control system.
- 1.10 The proposed receiver shall be integrated into a drone platform capable of operating with either its own integrated power source or by utilizing the drone's power system.
- 1.11 The proposed solution shall be designed to operate effectively under various environmental conditions, such as temperature fluctuations, humidity, and wind, for outdoor use.
- 1.12 The proposed solution shall comply with all applicable local regulations, including those set by relevant national aviation authorities, such as the Civil Aviation Authority of Thailand (CAAT), and other related authorities, including Thailand's National Broadcasting and Telecommunications Commission (NBTC) for unmanned aircraft systems (UAS).
- 1.13 Comprehensive user manuals, including quick reference guides, detailed installation and configuration guides, a detailed drone platform user manual, and detailed software user manuals, as well as technical specifications, maintenance guides, and operational procedures, shall be provided with the solution
- 1.14 All documentation shall be made available in English, with additional language options provided as needed
- 1.15 Along with the proposed solution, the contractor shall provide training programs for operators and maintenance personnel to ensure efficient usage. This training should encompass both theoretical and practical aspects of operating the drone platform, using the measurement tools, troubleshooting, and maintaining the system.
- 1.16 The contractor shall unlock the drone's geofencing to operate the drone platform at airports in Thailand, as specified in the operational plan in **Appendix A**, without any additional cost.
- 1.17 The proposed solution shall provide measurement results for ILS-LOC, ILS-GP and DVOR systems that demonstrate consistency with actual measurements from the AEROTHAI flight inspection aircraft during the acceptance test conducted at Nakhon Ratchasima Airport in Thailand. The test results shall be in accordance with the latest flight test report from AEROTHAI.

Note: Example of flight inspection results for LOC, GP, and VOR at Nakhon Ratchasima Airport are shown in **Appendix B**.



1.18 The proposed FIS software shall include the airport databases, and any relevant databases as specified in **Appendix A.** Users shall be able to add new airports and other related data without incurring additional costs. The proposed system shall also allow users to modify and update the database independently without any additional cost.

#### 2. Measurement capabilities

- 2.1 The proposed solution shall include ILS/VOR receivers with required flight inspection parameters such as bearing, signal strength and all needed modulation depth.
- 2.2 The proposed receiver shall be capable of calibration and alignment to ensure accuracy and precision in signal measurements according to ICAO Doc 8071, Volume I standards.
  - The proposed receiver shall include a documented calibration procedure, along with certification of the calibration records.
  - b. The proposed receiver shall be regularly calibrated according to the manufacturer's recommended intervals, with no additional costs for a period of two years from the date of acceptance of the proposed system.
  - c. In the calibration method, a test transmitter shall be connected to the radio frequency (RF) input of the receiver in order to input simulated signals. The output of the receiver is then compared to the nominal signals, and any deviations are recorded.
- 2.3 The ILS-Localizer receiver shall guarantee performance accuracy as specified below:

(Note: RF frequency range of 108.0 to 112.0 MHz)

- a. Deviation:  $\leq$  0.001 DDM [Range: -0.10...+0.10 DDM, Field Strength: -75...-20 dBm]
- b. SDM (for single modulation depth):  $\leq 0.5\%$  [Range: 35...45 %), Field Strength: -75...-20 dBm]
- c. Field Strength: ≤ 3 dB
- 2.4 The ILS-Glide path receiver shall guarantee performance accuracy as specified below:

(Note: RF frequency range of 329.0 to 335.0 MHz)

- a. Deviation:  $\leq$  0.003 DDM [Range: -0.20...+0.20 DDM, Field Strength: -75...-20 dBm]
- b. SDM (for single modulation depth):  $\leq 0.5\%$  [Range: 75...85 %), Field Strength: -75...-20 dBm]
- a. Field Strength:  $\leq 3 \text{ dB}$
- 2.5 The VOR receiver shall guarantee performance accuracy as specified below:

(Note: RF frequency range of 108.0 to 118.0 MHz)

- a. Bearing:  $\leq$  0.2° [Range: 0...360°, Field Strength: -80...-30 dBm]
- b. AM-Modulation (for Depth 30Hz/9960Hz):  $\leq$  0.5% [Range: 25...35 %, Field Strength: -80...-30 dBm]
- c. FM Deviation Ratio: ≤ 0.2 [Range: 15...17, Field Strength: -80...-30 dBm]
- d. Field Strength: ≤ 3 dB
- 2.6 The proposed receiver shall be able to pass the calibration tests conducted in Test Equipment Calibration Laboratory Department, AEROTHAI. and shall provide calibration records according to the standards specified in Technical Specification section [2.3 2.5]. This process will take place during the acceptance testing in Thailand.



#### 3. Drone Platform Requirements

- 3.1 The drone platform shall be a multirotor design, that includes a minimum of four motors, with each motor equipped with a dedicated Electronic Speed Controller (ESC).
- 3.2 The drone platform shall be designed to have low electrical noise characteristics in order to minimize interference with received signals. For example, propeller-induced modulation of the received signal must be as low as possible.
- 3.3 The total weight of the drone, including its payload and batteries, shall not exceed 25 kg.
- 3.4 The drone platform shall be powered by one battery set, include with an additional five spare sets.
- 3.5 Battery replacement shall not impact the configuration of the drone platform or the ILS/VOR receiver. Once the system is configured for a mission, operators shall not have to reconfigure it after replacing the battery.
- 3.6 The drone platform, equipped with the proposed receiver and antenna, shall have sufficient flight endurance to complete the necessary flight path, with a minimum duration of 15 minutes. The system shall be capable of performing multiple measurement sequences in a single mission flight.
- 3.7 The contractor shall unlock the drone's geofencing to operate the drone platform at airports in Thailand, as specified in the operational plan in **Appendix A**, without any additional cost.
- 3.8 The drone platform shall support at least three types of automatic operations, as follows:
  - a. Full-Automatic: Automatic flight along pre-programmed flight paths to a specified waypoint, including automatic takeoff and landing.
  - b. Stabilization (Semi-Automatic): Semi-automatic flight mode in which the autopilot system maintains overall flight stability by controlling altitude, position, speed, and directional heading. The system shall automatically adjust motor speeds in real-time to ensure stable flight and prevent undesirable tilting, spinning, or deviation from the intended flight path.
  - c. Return to Home (RTH): Automatic flight back to the starting point of the mission if an abnormality occurs, such as the battery being lower than the specified safety level (low battery), the wind being too strong, or the distance being too far for safe return. If desired, the pilot can also initiate the automatic return to the starting point.
- 3.9 The proposed system shall be designed with fail-safe mechanisms to ensure safe and reliable operation, including features such as 3.8(a), 3.8(b), and 3.8(c), along with real-time monitoring tools to notify operators of potential issues.
- 3.10 In the event of pilot incapacitation, it should be possible to trigger the following commands: LAND, Return to Home, and Flight Termination System (FTS) activation.
  - a. Return to Home (RTH): as specified in 3.8 (c)
  - b. Land immediately: Descend and land at its current position, regardless of GPS or home point.
  - c. Flight Termination System (FTS): Capable of executing a rapid and complete mission abort.



- 3.11 The drone platform shall include GNSS/RTK systems to support accurate, real-time navigation and positioning, and shall be capable of tracking at least 7 GPS satellites, comply with the CAAT Operation Manual Template for UAO (CAAT-GM-UAS-001).
  - a. The GNSS/RTK system shall provide real-time coordinate values with centimeter-level accuracy.
  - b. The GNSS/RTK system shall support use with multi-rotor drones.
  - c. The GNSS/RTK system shall be equipped with a base station.
  - d. The GNSS/RTK system shall be able to record data logs for later analysis.
- 3.12 The GNSS/RTK system shall provide centimeter-level positioning accuracy. The RTK receiver shall achieve an accuracy of  $\leq \pm 1$  cm, + 1 ppm (Horizontal) and  $\leq \pm 1.5$  cm, + 1 ppm (Vertical).
- RTK corrections shall be transmitted via an installed RTK ground station
- 3.13 The drone platform shall be equipped with navigation and flight control systems that utilize GNSS/RTK and at least two Inertial Measurement Units (IMUs) to improve accuracy in areas with weak GNSS signals.
- 3.14 During a flight, telemetry parameters, as defined below, shall be displayed to the Ground segment.
  - a. Heading of the drone.
  - b. Attitude
  - c. Speed
  - d. Height
  - e. Position
  - f. Connection status
  - g. Waypoints
  - h. Battery voltage and estimation of used capacity
  - i. Satellite status (for GPS)
- 3.15 The drone shall be capable of flying and conducting measurements at a maximum permissible wind speed of at least 8 m/s.
- 3.16 The drone platform shall have adequate payload capacity to carry the necessary measurement equipment without compromising flight stability or performance.
- 3.17 The drone platform and all integrated systems shall be designed to operate effectively under various environmental conditions, including temperature variations, humidity, and wind. The system shall be robust enough to withstand the operational environment typically found at airports and other locations, with an Ingress Protection (IP) rating suitable for outdoor use.
- 3.18 The ground flight control unit shall be capable of operating with the drone platform at a distance of no less than 1.5 kilometers and at an altitude of no less than 300 feet.
- 3.19 The drone platform shall include a carry case made of strong and durable outer material, with inner materials designed to absorb impact and prevent damage to the drone. The drone's structural components shall be easily removable or foldable to fit into the carry case for convenient transport.

- 4. Flight Inspection System (FIS) Software Requirements
- 4.1 The software shall enable pre-defined measurements, prepare the flight mission, process the measurement data and automatically generate reports.
- 4.2 The proposed FIS software shall feature a user-friendly setup and control interface, allowing for easy selection of measurement profiles.
- 4.3 The software shall comprise a dedicated database where the operator can enter and store all relevant information for the ILS and VOR to be measured, such as:
  - a. Airport (airport name, airport ICAO code, ...)
  - b. Runway (runway ID, Length, THR coordinates, ...)
  - c. LOC data (coordinates, elevation, parameters such as width, ...)
  - d. GP data (coordinates, elevation, parameters such as width, angle, ...)
  - e. VOR data (coordinates, elevation, ...)
- 4.4 The software shall support the following flight procedures (measurement profiles) as applicable, unless an alternative proposed procedures are shown to be more efficient and be compliant with related standards:
  - a. LOC: Approach, Partial Orbit
  - b. GP: Approach, Level Run (or Vertical),
  - c. VOR: Orbit (CW, CCW), Radial-In, Radial-Out
- 4.5 The software shall be possible to store a measurement profiles such as the user can later load the same parameters
- 4.6 The software shall provide a view where the selected measurement profile is visualized on a map with the proposed waypoints and all relevant measurement parameters
- 4.7 During a flight, a live view of the important measurement parameters, such as Course Deviation, Modulation Depth, Signal Power, shall be available for the operator, using a continuous data link between the airborne system and the ground control system.
- 4.8 For LOC, The software capability shall cover (receive, process, display, and record) the following parameters and units as minimum:
  - a. Localizer Course Alignment Accuracy, in  $\mu \text{A}$
  - b. Average Localizer Modulation Level, in % (Note: Both approach and partial orbit flight profile shall be presented.)
  - c. Course Structure Z1, in µA@NM
  - d. Course Structure Z2, in µA@NM
  - e. Course Structure Z3, in µA@NM
  - f. Localizer Course Width, in Degree
  - g. Minimum Clearance Within Sector 2 (150 Hz), in  $\mu$ A/Degree
  - h. Minimum Clearance Within Sector 1 (150 Hz), in  $\mu$ A/Degree
  - i. Minimum Clearance Within Sector 1 (90 Hz), in  $\mu$ A/Degree

- j. Minimum Clearance Within Sector 2 (90 Hz), in  $\mu$ A/Degree
- k. Symmetry, in % (Note: Percent of symmetry of the 90 Hz Side.)
- I. RF Field Strength
- 4.9 For GP, The software capability shall cover (receive, process, display, and record) the following parameters and units as minimum:
  - a. Glide Path Angle, in Degree (Note: Measured by approach flight profile.)
  - b. Average Glide Path Modulation Level, in % (Note: Both approach and level run (or vertical) flight profile shall be presented.)
  - c. Path Structure Z1, in  $\mu$ A@NM
  - d. Path Structure Z2, in  $\mu$ A@NM
  - e. Path Structure Z3, in  $\mu$ A@NM
  - f. Glide Path Angle, in Degree (Note: Measured by level run (or vertical) flight profile.)
  - g. Glide Path Half Width, in Degree
  - h. Upper 1/4-Sector Width (90 Hz), in Degree
  - i. Lower ¼- Sector Width (150 Hz), in Degree
  - j. Clearance Below Path (at 0.45 x Glide Path Angle Elevation), in  $\mu$ A
  - k. Clearance Above Path (at 1.75 x Glide Path Angle Elevation), in  $\mu$ A
  - I. Structure Below Path, in Degree (Note: Elevation angle at -190  $\mu$ A interception point.)
  - m. Symmetry, in % (Note: Percent of symmetry of the 90 Hz Side.)
  - n. RF Field Strength
- 4.10 For VOR, The software capability shall cover (receive, process, display, and record) the following parameters and units as minimum:
  - a. Average 30 Hz AM, in % (Note: Both radial in/out bound and orbit flight profile shall be presented.)
  - b. Average 9960 Hz AM, in % (Note: Both radial in/out bound and orbit flight profile shall be presented.)
  - c. Average 9960 Deviation Ratio (Note: Both radial in/out bound and orbit flight profile shall be presented.)
  - d. Radial Alignment Error, in Degree
  - e. Orbit Alignment Error, in Degree
  - f. RF Field Strength
  - g. Flight Level (MSL) Altitude: Starting Point and Termination Point, in Feet
  - h. Distance: Starting Point and Termination Point, in NM
- 4.11 For each measurement, all drone flight data should be available and it should be possible to analyze the behavior of the drone during the measurement via record data logs.
- 4.12 The full processed result should be available shortly after landing without the need of further processing.
- 4.13 The software shall be licensed permanently and will not require any additional fee.



#### 5. Required List of Deliverables

|     | • Items                                                    | Number                      |
|-----|------------------------------------------------------------|-----------------------------|
| 5.1 | Airborne segment                                           | 1 system                    |
|     | a. Drone platform with RTK position                        |                             |
|     | b. ILS/VOR receiver with associated antennas               |                             |
| 5.2 | Ground segment                                             | 1 system                    |
|     | a. Drone remote control                                    |                             |
|     | b. RTK base station                                        |                             |
|     | c. Flight Inspection System (FIS) operator computer        |                             |
| 5.3 | Flight Inspection System (FIS) operator Software (see      | 1 software licenses         |
|     | Technical Specification: Item 4 for details)               |                             |
| 5.4 | FAT Report                                                 | 1 original                  |
|     |                                                            | 1 hard copy and 1 soft copy |
| 5.5 | SAT Report                                                 | 1 original                  |
|     | a. Part 1: Conducted at Nakhon Ratchasima Airport          | 1 hard copy and 1 soft copy |
|     | b. Pgrt 2: Conducted at AEROTHAI's Laboratory              | . ,                         |
| 5.6 | Technical Manual and Documentation for the system and      | 1 hard copy and 1 soft copy |
|     | software l'sted in Items 5.1 – 5.3                         |                             |
| 5.7 | A Maintenance Agreement for the system and software listed |                             |
|     | in Items 5.1 –5.3 covering the period of 2 years           |                             |

### Appendix A:

### Flight operation plan

- The testing plan is developed to compare the results of signal testing (Inspection Report) obtained from drone inspections and flight inspections using aircraft.
- This comparison will be conducted for both the ILS and VOR systems in accordance with ICAO standards. A total of 10 tests will be conducted over a two-year period, starting from the delivery date of the drone inspection system. The tests will be carried out at four different locations, including:

|    | Location                                   | Navaids Facilities |
|----|--------------------------------------------|--------------------|
| 1. | Nakhon Ratchasima Airport                  | ILS, VOR           |
| 2. | Phetchabun Airport                         | ILS, VOR           |
| 3. | Hua Hin Airport                            | VOR                |
| 4. | Rayong Independent Navigation Aids Station | VOR                |

# Appendix B:

Examples of Flight Inspection Reports

for LOC, GP and DVOR

at Nakhon Ratchasima Airport:





Fig. 1.1 - ILS/LOC RWY 06 Partial Orbit 8 NM ±36° CW, 2240ft AMSL / 1500ft HGT



THR Approach, from 10.0 to -1.0 NM, 3770 ft AMSL, 3000 ft HGT

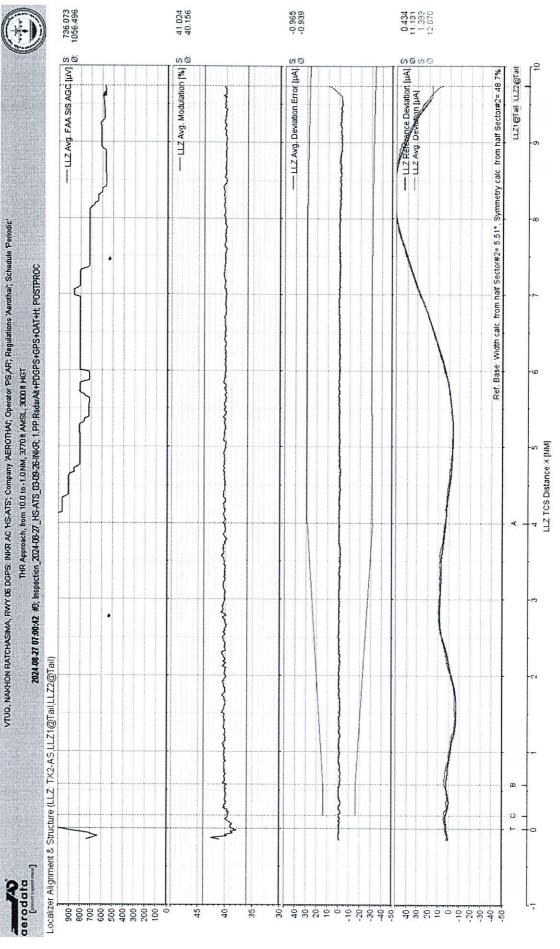



Fig. 1.2 - ILS/LOC RWY 06 Approach, from 10 NM to -1.0 NM, 3770ft AMSL / 3000ft HGT

15

Fig. 2.1 - ILS/GP RWY 06 Level-run, from 10.5 NM to -1.0 NM, 2270ft AMSL / 1500ft HGT

GP TCS Distance X [NM]

1.750

0

9 09





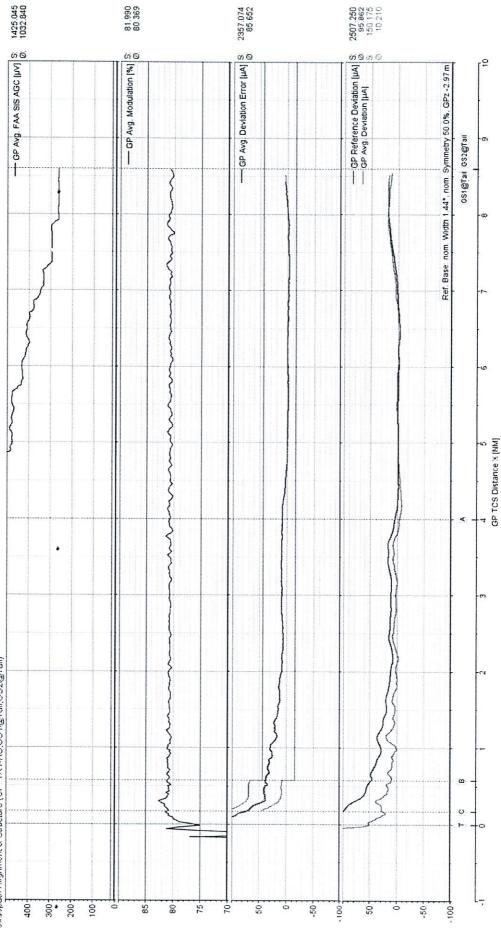
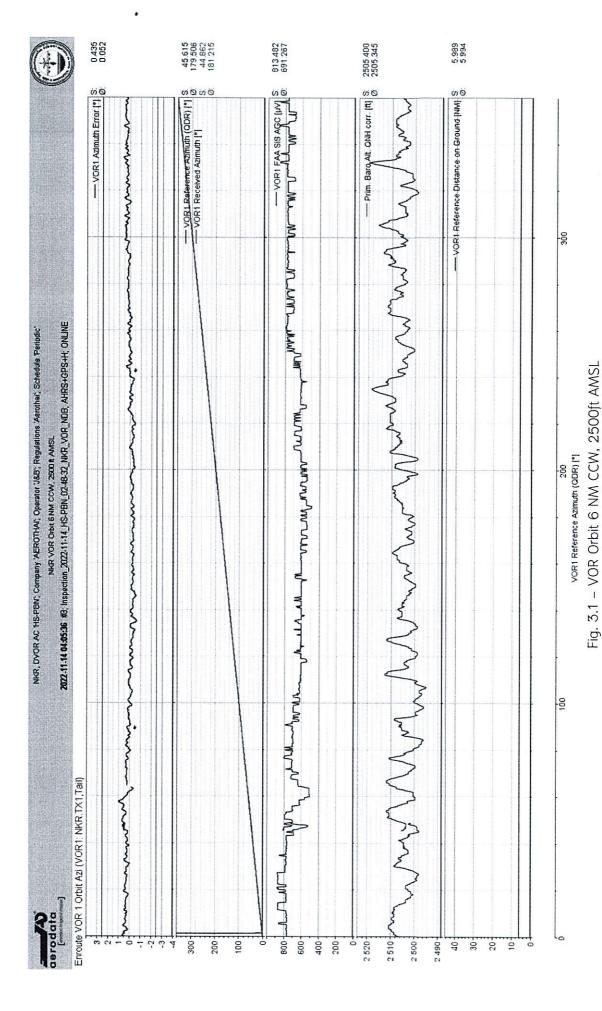




Fig. 2.2 - ILS/GP RWY 06 Approach, from 10 NM to -1.0 NM, 3770ft AMSL / 3000ft HGT





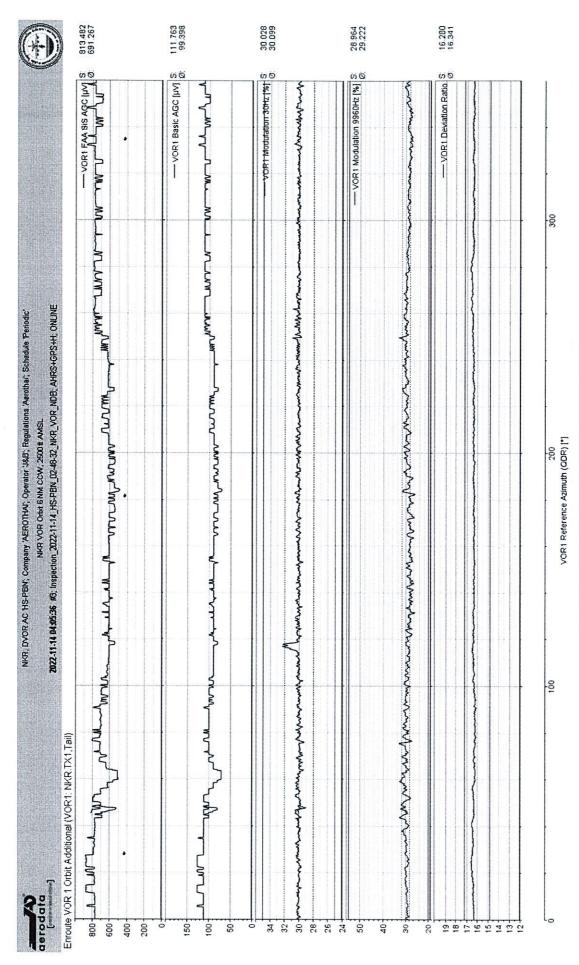
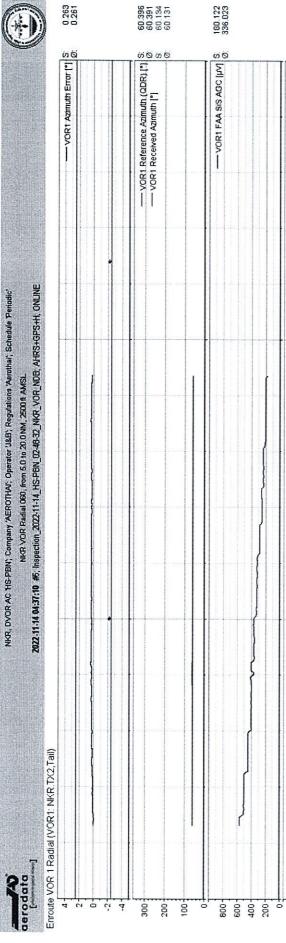




Fig. 3.2 - VOR Orbit 6 NM CCW, 2500ft AMSL



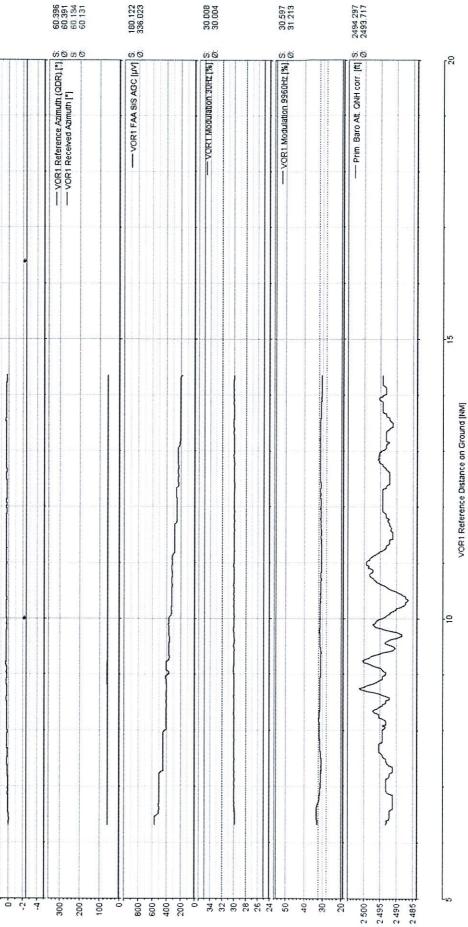



Fig. 3.3 VOR Radial 060, from 5 NM to 20 NM, 2500ft AMSL



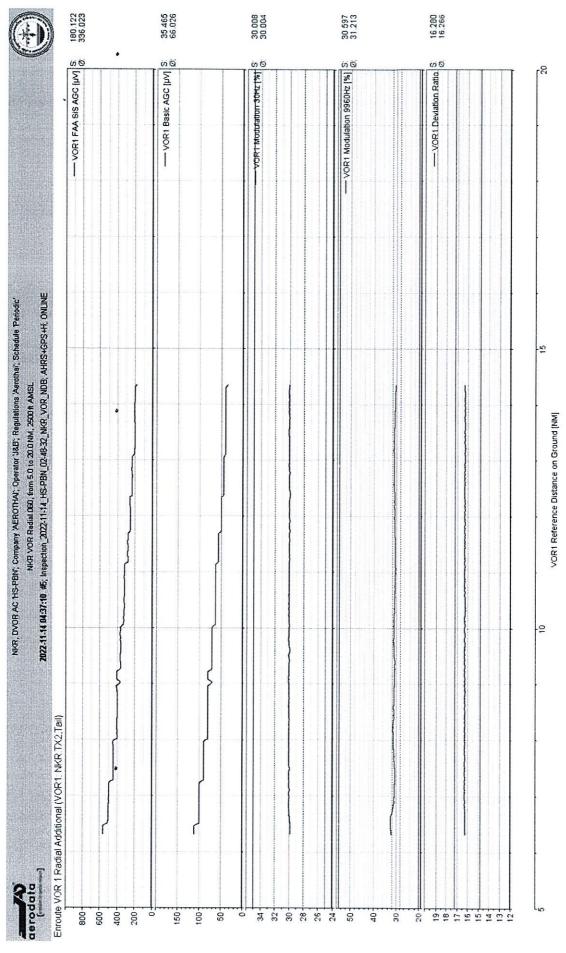



Fig. 3.4 VOR Radial 060, from 5 NM to 20 NM, 2500ft AMSL

